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Abstract

In this study, asteady three dimensionalviscdieldid flow and heat transfer due to a stretchsheet
with an applied magnetic field is considered foalgsis. The fluid far away from the surface is agniviand the
motion in the flow field is caused by the stretchsurface in two lateral directions.The heat gfan analysis has
been carried out for two heating processisthe constant wall temperature (CWT) and dbestant heat
flux (CHF). An analytical solution in the form skries expansionfor the velocity and temperatus&idution is
obtained employing homotopyanalysis method (HAM)he quantities of interest are velocity and tempeea
distribution as well as the skin-friction andthe Iwaeat flux. These are determined for various galwf the
parameters such as viscoelastic parameter, nomdioreal magnetic parameter, stretching ratio amdRhandtl
number. The results obtained are presented irfdime of graphs and tabulated data. It isobserved both
velocity and boundary layer thicknesses decreaskingreasing magnetic field. But the presence ofymeéic
parameter increases the heat transfer coefficfentboth constant wall temperature and constant fiea cases.
The effects of the variation of all parameters désed in detail. Thus, approximate analytical seselution

obtained from Homotopy analysis is in very goodeagnent with the other methods and results.

Keywords:3D Viscoelastic fluid, Heat Transfer, Stretchidgrface, Applied Magnetic

field,

HAM Solution

Introduction

In several engineering and mechanical processes differences in shear flows. The equations of motifn

such as extrusion, melt spinning etc., the extruded the viscoelastic fluid are one order higher thae th

material issues through a die. The ambient fluid Navier-Stokes or the boundary layer equations gomgr
condition is stagnant, but the flow is induced ndw the Newtonian fluids and the boundary conditioresraot
material surface being extruded due to entrainroétite sufficient to determine the solution completelync the
fluid caused by stretching of a moving surfacerelgions elastic parameter occurs as a coefficient of thyhdst
away from the slit, the flow may be assumed to be o  derivative in the differential equations governitige
boundary layer type. However, this is not true nidnar flow, the mathematical problem reduces to a singula
slit. Similar situations arise during the manufaetwf perturbation problem.
plastic and rubber sheets. Another example thaingsl Sarpakaya [1] was mostly first researcher to
to the above class of problems is the cooling ofda investigate the magneto hydro dynamic flows of non-
metallic plate in a bath, which may be an electely Newtonian fluids. Anderson[2]and Ariel[3] extendgg:
Glass blowing, continuous casting and spinningtoérs above analysis to include the effect of the magrfegid.
also involve the flow due to a stretching surfaeceall Dandapat and Gupta[4]andCortell[5] have considéned
these cases, the quality of the final product ddpen heat transfer aspect of this problem for the constall
largely on the skin friction and heat transfer sad¢ the temperature case. Vajravelu and Rollins [6] have
surface. investigated the effect of variable surface temipeea

In recent years, the non-Newtonian fluids with and surface heat flux on the heat transfer of etadting
magnetic field find increasing applications in isthy surface. The three dimensional flow of Newtoniand$
and technology. The non-Newtonian fluids charazeati over a stretching surface in two lateral directianhout
by a power law model have some limitations as tihey magnetic field was studied by Wang[7]. Unstedugé

not exhibit any elastic property such as normagssr
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dimensional stagnation flow over a viscoelastiadfiwas
considered by Rajeswari et. al. [8].

Very recently in 2013, the three dimensional
flow of Jeffrey fluid with variable thermal condirty
and thermal radiation was examined analyticaly b
Hayat et.al [9]. Nandappanavaret. al.[10] studikd
heat transfer of viscoelastic fluid flow due to tioear
stretching sheet with internal heat source. Thetginbd
approximate analytical local similar solutions dfet
highly non-linear momentum equation for velocity
distribution by transforming the equation into Ritie
type and then solving this sequentially. The cphad
Homotopy analysis method was first introduced inhie
literature by Liao[11]. Following his idea of hotopy
analysis, several hundred research appears ang bei
published applying this technique. The homotopy
solution for stagnation point flow of a non-Newtani
fluid an incompressible second grade fluid impinges
the wall was investigated by Hayat et.al [12].

The extension of [12] byShehzad et.
al[13]presents the homotopy solution of boundayer
flow of Maxwell fluid with power law heat flux inhe
presence of heat source and hydromagnetics. Homotop
analysis method for MHD viscoelastic fluid flow and
heat transfer in a channel with a stretching wall i
examined by Raftari&Vajravelu[14].The flow of the
viscoelastic fluid over a linearly stretching sedan an
otherwise ambient fluid was investigated by Rajada
al.[15], who obtained the solution numerically mall
values of the elastic parameter.

In all the above research papers, the combined
effect of the three parameters such as applied ati@gn
field, stretching rate and the viscoelastic patamen
the velocity and temperature distribution and oin sk
friction and heat transfer rates have not beent dati.
Hence, the present analysis deals with the stethdge
dimensional flow and heat transfer of a viscoetafitiid
over a stretching surface in two lateral directianith a
magnetic field applied normal to the surface. Thdf
far away from the surface is ambient and the motion
the flow field is caused by stretching surface ot
directions.

Problem Formulation and Governing Equation

In reality, most of the fluids considered in
industrial applications are non-Newtonian in nature
especially of viscoelastic type than viscous typtence,
we consider the steady motion of a viscous
incompressible electrically conducting viscoelaghigd
induced by the stretching of an infinite flat sedan two
lateral directions x and y.The surface is assunoetet
highly elastic and is being stretched by the actidn
uniform but increasing forces. Led’andb’ be the rate
of stretching in x and y directions, respectivaie fluid
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is assumed to have constant properties and itrissatat
infinity. No slip conditions are imposed on theesthing
surface. The temperature of the ambient fluid iptke
constant as &. Both constant wall temperature case

(CWT case) and constant heat flux case (CHF case) a
included in the analysis. For the CWT case, théaser
temperature is kept constant while for the CHF dhse
temperature gradient in the z- direction at thdasar is
kept uniform.

It is assumed that the normal stress is of the santher
of magnitude as the shear stress. Thus bo#nd A1

(=a1/p) are of62vvhere6 is the boundary layer thickness.

The magnetic field B is applied in z-direction. The
magnetic Reynolds number RmggoVL<<1l, where
Moand ¢ are the magnetic permeability and electrical
conductivity, respectively and V and L are the
characteristic velocity and length. Hence the imdlc
magnetic field is small in comparison to the applie
magnetic field and is therefore neglected. Thetetad
current flowing in the fluid will give rise to amduced
magnetic field if the fluid were an insulator. Hene
have taken the fluid to be electrically conductifidne
viscous dissipation and ohmic heating terms in the
energy equation are neglected as they are assworsal t
small. Under the foregoing assumptions, the boundar
layer equations, governing the flow and the hemisfer

of a viscoelastic fluid over a stretching surfacetwo
lateral directions, are given by [2], [7] and [13].

0(1)

= DUy, —

U+ vy, + w, =

oB%u

uu, + vu, + wu,

/’ll[(uuxzz +vu,,, + wuzzz) — (uzz Uy +vu, +
WyU, + 2U, Uy, +
2v,uy, +

2 Wz Uz, )](2)

oB?%v

uvy + Vo, + WU, = 0V, —

Al[(uvxzz +vvy,, + wvzzz) — (uzz Vy + U0, +
W, U, + 2u,v,, +

2v,v, +
2 Wz Vzz )] (3)
ul, + VI, + wl,

= ( g )Tzz(4)

pCp.
The boundary conditions are given by:

u(x,y,0) =u,; v(x,y0) = v,; w(xy0)=0(5a)
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u(x:yroo) = U(x,y'oo) = uz(xry'oo) = Uz(x,y,oo) =
0(5b)

T(x,y,0)=T,, T(xy0) =
T, for the CWT case; (5c)

aT
—k (Z)z=0 = gq,for the CHF case(5d)

Here x, y and z are the orthogonal coordinate
system and u, v and w are the velocity components
along x, y and z directions, respectivehgndv are the
density and kinematic viscosityrespectivly(=a1/p)is
the viscoelastic parameter; T is the temperatupeisGhe
specific heat at constant pressure; k is the thlerma
conductivity; qy is the heat transfer rate at the surface; a
and b are the velocity gradients at the wall innd &
directions respectively; and the subscripts x,yenade
derivatives with respect to x,y,z, respectivelyd ahe
subscripts w ando denote conditions at the wall and in
the ambient fluid, respectively. Alsg = ax, v, = by .

Eq.(1) to (4) can be reduced toa set of self-simila
equations by apply the following transformations,

a\1/2

1= ()

z,u = axf’(n), v= bys'(n),

1
w = —(av)z(f +cs),c = b/a
M =%2and0r = M(%)’ A= 14 (%) >0,

T—-Tew = (Tw— Tw) g(m)forthe CWT case,

T—Te = (1—‘”) (2)1/2 G (mfor the CHF case,

It is verified that Eq.(1) is identically satisfieby the
choice of u, v and w and Eq. (2)-(4) reduce to

£ 4 (F4+ cs)f — (F)2 — MF
+ A[(f+ cs)f”
— 2(f
+ s "+ (f' —csDHf'1=0
(7)

s" + (f+ cs)s’' —c(s)? — Ms’
+ A[(f+ cs)s™”
_ 2(f
+cs)s” + (cs"—fD)s"]1=0
(8)
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g +Pr(f+ cs) g = Ofor the CWT
G"+Pr (f+ cs) G' = Ofor the CHF(9b)
The boundary conditions Eqns. (5a-5d) are rewrids,
f(0) fO =1 s(0)=c
f(@) = s'(0) = f'(0) =s"(0) = 0:

g(0) =

=s(0) = 0,

1, g(o) =0 for the CWT case

G'(0) = —1, G(») = 0 ,for the CHF case
(10)

For Newtonian fluids X=0), the order the governing
equation reduces and hence the conditifngo) =
s"(0) = 0 are not required.

Here nis the transformed similarity variable;
f'and s'are the dimensionless velocity components
along x and y directions, respectively; g and G the
dimensionless temperatures for CWT and CHF cases,
respectively; ‘c’ is the ratio of velocity gradisnglso
known as stretching parameter; M is the magnetic
parameter; uis the coefficient of viscosity;Pr is the
Prandtl number; dis the dimensionless viscoelastic
parameter; and prime denotes derivative with resfmec
n. Egn. (7) - (9) under conditions Eqn. (10) for0
represent the three dimensional flow of Newtonlard$
and forA>0 they represent the flow of non-Newtonian
fluids (here it is viscoelastic fluids).

For Newtonian fluids the boundary conditions
f"(0) = s"(0) = Oare not explicitly required. Also,
Eq. (7) and (8) fok= M = 0 are identical to those of
Cortell [5]. For c=0, Eq. (7) - (9§6Peduce to theo-
dimensional flow over a stretching surface and tfos
case s = 0. Further, for c=1 these equations reptes
axisymmetric flow and in this case s=f. For c=, &)
is identical to that of [2].

The skin friction coefficients in x and y diremtis can
be expressed as

Cix= (1= Du(F) /puu, = Q-
A) Rex~ 2 £"(0) (11a)

Cy= (1 -Du(3) /puww, =0~

zZ=

L) Rex1/25"(0) (11b)
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The heat transfer coefficient in terms of the
Nusslet number can be written as,
Nu = where qw

) ( )z 0
- R€x2 g (O)fd"r CWT (12a)
Nu= — Rexz/ G'(0)for the CWT(12b)

qu

Where Gx and Gy are the surface skin friction

coefficients in x and y directions, Nu is the Nassl
number and Rex (= ax?/v) is the local Reynolds
number.

Method of Solution

In order to obtain an analytical solution of the
non-dimensional equations (7) to (9) satisfying th
boundary conditions (10), we employ Homotopy
Analysis Method (HAM). Thismethod is a recently
developed approximate analytical method which i/ ve
popular amongst the present researchers. It peaid
method in the sense that it is a pure analytic g to
solution procedure but solvable only using Computer
Algebra System. This was introduced in the literat
only in 1992 by S. J. Liao and is described inadlet
in[11]. Hence,the details are not presented herdhe
sake of brevity.However, the main components inedlv
in applying HAM procedure are (i) selecting suieab
initial profiles satisfying the boundary condition$ the
problem and (ii) selecting an appropriate auxilikmgar
operator so that its solutions are simpler to eatalu
analytically.

In the present problem, depending upon the boyndar
conditions (10), we choose the initial guesses and
auxiliary linear operators as follows.

fom =1=2e™, so(m) =c(l—e™), go() =
e™", Go(n) = e™"(13)

_d3f df, L _d3f df, L __ d?f

f " ag3  dn’ 7S dn® dn’ 9 anz
dz3f

& Lo =gz — G(14)

so that,

Lg[C7en + Cge_n] =0 ; LG[Cgen +
Cloe_n] = 0(17)

in which Gare arbitrary constants. It is to be mentioned

here that the choice of initial profiles and linea
operators are not unique for a given problem, het t
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faster convergence of the solution depends onhbe&e
of those.

The governing equations (7) to (9) prescribe the
nonlinear operator for the homotopyanalysis thioug
which a system of deformation equations are written

Zeroth and Higher-order deformation Equations:

To obtain the HAM solution for the governing Eq) €7
(9), in par with the standard notations followedainy
HAM Analysis, ley € [0,1] be an embedding
parameter and i hs and hgare the non-zero auxiliary

parameters. Then the non-linear operators and tlzero
order deformation equation takes the form,

Nfmn] =

23f(n.y) 2fmy)  (3f@M)?
L+ (f.n) + estny) S0 - (F20) -

n (22) + a( (P +

CS(T] ,y))a f(ﬂy)>+

*f@my) (3*fmy)
l( an? ( an?

%5\ \ _
¢ an? )>

3fmy) (8fmy)
2/1<—an3 (—617 +

as(n,
c—sg’;”)> (18)

N[s@., fnp)] =& SW) +(Fon +
cs(m, )’)) 625(77 Y_¢ (asz(;;y)) -

M(%’Z,”) + l((f(n.)/) +

cs(n,y)) 52 ”) +

a%5my) ( L 9%5(my)
A( an? (C an?
62f(n.y)) _
an?
5 R
- (a s (ofan

an3 an

£ 956, y))>(19)
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N[0, 30,7, T )]

_0%g(n.y)
=~
R ag(n,
+ Pr ((f(n. ¥) + 3. 7)) gg; Y))

(1- V)L[[f(n; v —fom] =
yheN:[F (1), 5, p)](21)

(1- y)Ls[3(.v) — so] = v N[f (7).
3. 1)](22)

(1-v)Ly[dM¥) — 9o = v N [T (7).
3(m,7), (. 7)](234)

(1-v)Ls[GCy) = Go] = Yhe Ne[F(1.7),
3(n,v),G(n,)](23b)

Note that the nonlinear operator for CHF caseésstme
for the CWT case as they differ only in their boand
conditions.

Theboundary conditions take the form

7 afmy) afm.y)

f(T], V)|n=o =0, a:l]]’ |1]=0 =1, Ty|n=w =
a*fm.y) _

0, “onz |,7:OO = 0(24)

a a5(n.y) 95(n.y)

s(n' ]/)l‘l]:o = 0‘ 6,'7 |77:0 =c, 67] |r]:oo =
225(my) _

0, ot |Tl=°0 = 0(25)

G Vly=0=1 and G, y)ly= = 0 for CwT

case (26a)

aG'(n,y)

on
(26b)

ly=o = —1 and G(,¥)|,=, = Ofor CHF case

For I th - order deformations equation, we first
differentiate Eqgns. (21)-(23)times with respect to;
dividing them bylland then set= 0. Following this
procedure we have

Le[fi(n) — Qufi.s ()] = heR] ()(27)

Le[s;(m) — si-1 ()] = AR}
(28)
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Lylgi() — Q9:1-1(m)] = hyRY ()(29a)

Le[Gi(n) = Q611 (M) = heRY ()(29b)

With boundary conditions
(20)

[O)=0,£(0)=1 fi(®)=0,f(x)=0
5:(0) =0, 51'(0) = 51'(00) =0, Sl”(oo) =0
9,(0) = 1, g,() = 0 forthe CWT case

G, (0) = -1, G;(0) = 1, for the

CHF case(30)

WhereRf(n), Ri(n) and Rf’(n)are remainder terms of
the linear operators such as,

RI@M) = fioa @) + V5 fioamsfi = flaif] +

¢ Tjzolsioaifi T+ A Xl fieaifi +

filasifi 1+ Ae Zistlsioaifi = siaifi ] =
20856 = 22 Zizh[sia i T =

Mf_y () (31)

REM) = 511" @) + Bi2h[fimaoss) — sicaysi] +

¢ Siblsiias] + A T fiays +

sioayS |+ Ac Tizh[sicamys) = siiays)] -
228550 fias ] = 22 B[ty ] -

Ms,_; ()(32)

R/ () =
9gi-1(m) + Pr Z;;%)[ﬁ—l—jgj] +
¢ Pr ¥i-6[si-1-;9;](33a)

R ) = ,
G_1 () + Pr ZiTolfi iG] +
¢ Pr X5 2b[si-1-;G;](33b)

whereQ;is defined a®;, = Owhenl<1 and Q; =
1 for L > 1(34)

Expanding f(1,¥),8(n,y) and §(n,y) in Taylor series
with respect tg,

famy) =
fo(m) +

AlfGY] Al = 22LED) (35807, 1) =
so(m) +
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Y2 lsimy'l s = ““(" D _o(36)4(n,¥) =
(n) = 1‘“’“’ )| _(373)

9o + Xz la '], T

G (n ¥) = Go() + Ziza[G,(my'], Gz(n) =

1 ale 9°G (m;v)
“ ayl |y 0(37b)

Fory = Oandy = 1in Eq.(21)-(23) may be written as
f@m 1D = f(n)(38)

$(, 1) =s®)(39)

g, 1) = g(n)(40a)

G(n,1) = G()(40b)

f,0) = fom),
$(,0) = so(n),
g@,0) = go(m,
G(1,0) = Go(),
Thus ag increases from 0 to 1 afh,y),
$(n,v),d(m,y)and G(n,y)varies from the initial guess,
the functiong, (1), so(m), go(m)andz,(n)approaches to
the solutionf (), s(n),9(m)and G(n)of the governing
equations respectively. Here, theauxiliary patanse
are suitably chosen so that the series solutiowerges
for y = 1.

f@) = fom) + X1z [fi()]1(41)

s() = so(m) + Xiza[s:(m1(42)

g@m) = go(m + Xiz1[9:(m)](432a)

G(n) = Go(n) + Xiz1[G(1m)](43b)

Thereforewe get the general approximate analytical

solutions(f;, s;, g; and G;) in terms of series solutions
evaluated up tolth ordeff;", s/, g; and G;) along with
the solution of the linear operators chosen inpitzdlem
as

fim = () +C; + Cre™ +

C;e7"(44)

s;(m) = s;(m) + C4 + Cze” +
Cge™"(45)

9:(m) = gi(m) + Cre™ +
Cge (46a)

Gi(n) = G/(n) + C7e" + Cge™"(46b)

We solve the Eqns. (44) - (46) for various valuéd’'o
starting from 1,2,3,... by means ofthe symbolic
computation software Mathematica 8.0.
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Computational Procedure

A Mathematica code is written to solve the
above set of equations (35) to (40). Starting flarawn
functions for, (), so(n).90(m) and G,(n), the next
set of functionsf,(m), s;(n), g.(n) and G,(n) are
computed using the equations (35) to (40). Usirgseh
two sets, the next set of functiong(n), s,(n),
g-(m) and G,(n)are algebraically computed and so on.
At any stage, the functions obtained are a polyabof
degree | in ‘h’, the auxillaryhomotopy parametevhere
the coefficients of the polynomial may contain soame
all the parameters present in the problem. The
computations are carried out up to | = 25, to dager
that the values offi(n), s;(n), g:(n) and G,(n)
obtained at that stage are consistent and accupate 9
digits. It is to be mentioned here that the aneti
expressions obtained fqfi*,s; and g; are too lengthy
even for the value of | =5. Hence the actuakesgions
are reproduced here.

Convergence of the solutions

As it is done traditionally in anyhomotopy
analysis, the auxiliary parametdr is optimized by
drawing & -curves with respect té,, hAsand fgto find
the convergent interval for f, s and g. From thewseres
it is found that the admissible rangeshgf i;and i, are
-13<hf <0, -12<h; <0 and -11<h,; <O0.
The nicurves are shown in Fig. 1. It is clear from Hig.
that the numerical values for f, s, g are insevssito the
value ofh chosen fron the above mentioned range.

Oo0.1LM 00.7.Pr O01.4,¢ 00.5
00 T .

1
Al | 1
=] —0s | “ o
i e e cer—— of
= A T TN
j C10 Fi . S"LDL E
= ! g'lal J
o g o I 4
e .
0 i 1) 05 0.0
755
Figure. 1 n-curve for the functionsf’’ (n), s’ (n) and
g’'(matn=0

Results and Discussion

The analytical solutions of velocity and
temperature profiles so obtained are a set of jpohyals
in higher powers ofi (the homotopy parameter) whose
coefficients contain M,the magnetic parameter;the,
stretching parameter ahdhe viscoelastic parameter and
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Pr, the Prandtl number. The solution can be obthip

to any order depending upon the required acculady. 4 ['0'.'] i ['5}'] g0}
. - Kumariand Ibrahim[18] Present
often the case that the expressions obtained frél H G Nath [17] B
are too lengthy even for a polynomial of degrea5#’'.
gthy " apoly €9 0.00 0.4957  0.49587 0494665
In the present analysis, the computations haven bee
X ) 0.25 0.5358 0.53621 0.506619
performed up to Z5degree to ascertain the consistency
: : : 0.50 0.5798 0.57967 0.540192
in values, but the results presented in tablesfigindes
are calculated from the ?@legree polynomial ink" of Dds a3 082308 Dagriey
g POty 1.00 0.6656 0.66538 0.654128

the series solution containing all the parameters.

Table 2.Comparison of heat transfer results for stedy
In order to assess the accuracy of our resukshawe casé€—g’'(0)) when Pr=0.7

compared our results for the Newtonian case=( 0)in
the absence of magnetic parameter (M = 0) withdAp —
[16] and presented in Table | for shear stress S . ME(,)'7’ CfO'S
components in ‘X’ and ‘y’. The same for the heansfer
case is compared with [17] to [18] in Table llidtfound L B
that our results are in good agreement with thstiexj = o F
results. f '

[10.0
[T0.5
(T11.0
[(T1.5

—f"(0) —s'"(0) —s"(0) —s""(0)

Ariel[16] Wang[7] Ariel[16] Present
0.00 1.00000 1.00000 1.00000 0.00000 0.00000 0.00000

0.10 1.02090 1.01702  1.00199 0.06684 0.07309 0.06477
0.20 1.04180 1.03458  1.00787 0.14873 0.15823 0.14047
0.30 1.06270 1.05247 101745 0.24336 0.25434 0.22766 W
0.40 1.08360 1.07052  1.03056 0.34920 0.36059 0.32671 .
0.50 1.10450 1.08866  1.04704 046520  0.47629 0.43777
0.60 1.12541 1.10679  1.06670 0.59052 0.60083 0.56090 Figure. 2(a) Influence ofdon f'(Tl).
0.70 1.14631 1.12488  1.08935 0.72453 0.73373 0.69608
0.80 1.16721 114879  1.11481 0.86668 0.87455 0.84324

0.90 1.18811 1.16076  1.14287 101653 1.02292 1.00234 Mm 7 C H) 5
T T

1.00 1.20901 1.17351 117334 117372 1.17851 1.17334

Table 1.Comparisonof skin friction results for steay case ' 21
(=£"(0), —s"(0)) when os b
Pr=1.3,M = A = 0 andh; = hy = hy = —0.6.

1

'Ll

Several computations have been made to check the o b
influence of the parameters of study, such as the
viscoelastic parameter, ‘c’, the stretching rati’, the
magnetic parameter on the velocity and temperature
profiles as well as on skin friction and heat tfans =,
coefficients. Figure. 2(b) Influence of2 on s'(1)
Some of these results are presented here in the dor MIO.5.PrOl.4,.C0.5
graphs. Figures 2(a), 2(b) and 2(c) show theuarfte s T " j =
of A on the velocity and temperature profiles. It is 12 f
observed that the boundary layer thickness decsease 10 k¢
the values of increases from 0.0 to 1.5, whereas the %L os |
thermal boundary layer thickens for the incregsin

values of viscoelastic parameter. There is a teatpes oa |
over shoot for the higher valuesXxds seen from figure o2 f
2c. Figures 3a, 3b, 3c present the effect of magne s ks
parameter, ‘M’ on velocity and temperature profitexd

figures 4a, 4b and 4c shows the effect of the dimeg
ratio ‘c’, Figure. 2(c) Influence ofdon g(1).
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Figure 5 shows the effect of Prandtl number on
the temperature profiles for a fixed values of W, and
C. Here again increase in Prandtl number decrdhses
thermal boundary layer thickness. The effect of
viscoelastic parametei” on the skin friction and heat
transfer coefficients are plotted for various ‘esuof
Stretching ratio ‘c’ in figures 6(a), 6(b) and 6(c)
respectively.For a given value of ‘c’, the increasei
increases the skin friction rates and the heatstean
coefficients.

Conclusions

In this study, the flow and heat transfer of a
three dimensional viscoelastic fluid is studied the
presence of applied magnetic field. Using Homotopy
Analysis Method, an approximate analytical soluti®
obtained in the form of Taylor series expansion in
powers of the homotopy parameter ‘h’. The effexfts
various parameters such as the magnetic parameter M
the stretching ratio ‘c’; the viscoelastic paraenetand
the Prandtl numberPr on the velocity and tempeeat
distributions as well as on skin friction and heanhsfer
coefficients are studied.It is observed that batloesity
and boundary layer thicknesses decrease with isiciga
magnetic field. This shows that application of meaiic
field causes a control on the boundary layer théskn
But the presence of magnetic parameter increases th
heat transfer coefficients for both constant wall
temperature and constant heat flux cases. The
computations show that the skin friction and thathe
transfer coefficient increase with the increasing
viscoelastic parameter and the stretching paramétke
heat transfer coefficient forthe constant heat ftase is
higher than that of the constant wall temperatuasec
Temperature and thermal boundary layer thickness ar
increasing for increase in the values af whereas the
effect is opposite for boundary layer velocities.
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